Role of Surfactant during Microemulsion Photopolymerization for the Creation of Three-Dimensional Liquid Crystal Elastomer Microsphere Spatial Cell Scaffolds
نویسندگان
چکیده
Citation: Bera T, Malcuit C, Clements RJ and Hegmann E (2016) Role of Surfactant during Microemulsion Photopolymerization for the Creation of Three-Dimensional Liquid Crystal Elastomer Microsphere Spatial Cell Scaffolds. Front. Mater. 3:31. doi: 10.3389/fmats.2016.00031 role of surfactant during Microemulsion Photopolymerization for the creation of Three-Dimensional liquid crystal elastomer Microsphere spatial cell scaffolds
منابع مشابه
Synthesis of Biocompatible Liquid Crystal Elastomer Foams as Cell Scaffolds for 3D Spatial Cell Cultures.
Here, we present a step-by-step preparation of a 3D, biodegradable, foam-like cell scaffold. These scaffolds were prepared by cross-linking star block co-polymers featuring cholesterol units as side-chain pendant groups, resulting in smectic-A (SmA) liquid crystal elastomers (LCEs). Foam-like scaffolds, prepared using metal templates, feature interconnected microchannels, making them suitable a...
متن کاملTissue Engineered Scaffolds in Regenerative Medicine
Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...
متن کاملبررسی تأثیر سایز حفرات داربستهای کیتوزان- ژلاتین در اتصال سلولهای اپیتلیال پردۀ آمنیون به منظور کاربرد در مهندسی بافت
Abstract Background: The amniotic membrane has gained much attention in regenerative medicine as a precious cell source. Recently, reparation of three dimensional matrices (scaffold) with appropriate specificity for cell culture, which depends on cell type, has been the subject of many studies .This study aimed to design optimal three-dimensional matrices in order to utilize amniotic epithel...
متن کاملLiquid crystal elastomer foams with elastic properties specifically engineered as biodegradable brain tissue scaffolds.
Tissue regeneration requires 3-dimensional (3D) smart materials as scaffolds to promote transport of nutrients. To mimic mechanical properties of extracellular matrices, biocompatible polymers have been widely studied and a diverse range of 3D scaffolds have been produced. We propose the use of responsive polymeric materials to create dynamic substrates for cell culture, which goes beyond desig...
متن کاملFabrication of three dimensional (3D) hierarchical Ag/WO3 flower-like catalyst materials for the selective oxidation of m-xylene to isophthalic acid.
A three dimensional (3D) hierarchical silver supported tungsten oxide flower-like microsphere catalyst has been fabricated using a cationic surfactant CTAB. It was found that the crystal-splitting mechanism plays a key role in the formation of this flower-like structure. This catalyst was proved to be highly effective in the liquid phase selective oxidation of m-xylene to isophthalic acid.
متن کامل